We will demonstrate the benefits of heterogeneous integration of different materials by combining InAs quantum dot emitters, Lithium Niobate modulators and switches, and superconducting detectors in a mature foundry-based silicon nitride waveguide interposer. To achieve such seamless integration between various well-established architectures, it is necessary to develop a robust and industry-ready baseline for cross-platform integration. Therefore, uTP4Q will employ micro-transfer printing as the key technological framework for combining multiple functional technologies for quantum optical processing on a Silicon Nitride waveguide interposer. This is where uTP4Q is ground-breaking: for the first time we will integrate several building blocks of different nature on a single SiN waveguide interposer. Once developed, we will proof the viability and performance of our scalable platform by achieving the following unique demonstrators:uTP4Q